Saturday, April 05, 2025

Cross-validating Quantum Network Simulators

 New paper on the arXiv. I'll be presenting this one at an INFOCOM workshop in London next month.

During this cross-validation process, we not only fixed bugs in both simulators, but we gained a deeper understanding of the performance differences caused by protocol design differences.

Cross-Validating Quantum Network Simulators

Joaquin Chung, Michal Hajdušek, Naphan Benchasattabuse, Alexander Kolar, Ansh Singal, Kento Samuel Soon, Kentaro Teramoto, Allen Zang, Raj Kettimuthu, Rodney Van Meter

We present a first cross-validation of two open-source quantum network simulators, QuISP and SeQUeNCe, focusing on basic networking tasks to ensure consistency and accuracy in simulation outputs. Despite very similar design objectives of both simulators, their differing underlying assumptions can lead to variations in simulation results. We highlight the discrepancies in how the two simulators handle connections, internal network node processing time, and classical communication, resulting in significant differences in the time required to perform basic network tasks such as elementary link generation and entanglement swapping. We devise common ground scenarios to compare both the time to complete resource distribution and the fidelity of the distributed resources. Our findings indicate that while the simulators differ in the time required to complete network tasks, a constant factor difference attributable to their respective connection models, they agree on the fidelity of the distributed resources under identical error parameters. This work demonstrates a crucial first step towards enhancing the reliability and reproducibility of quantum network simulations, as well as leading to full protocol development. Furthermore, our benchmarking methodology establishes a foundational set of tasks for the cross-validation of simulators to study future quantum networks.

No comments: